3.7.38 \(\int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx\) [638]

Optimal. Leaf size=180 \[ -\frac {\text {ArcTan}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a-b} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a+b} d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}} \]

[Out]

-arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))/d/(I*a-b)^(1/2)-arctanh((I*a+b)^(1/2)*tan(d*x+c
)^(1/2)/(a+b*tan(d*x+c))^(1/2))/d/(I*a+b)^(1/2)+4/3*b*(a+b*tan(d*x+c))^(1/2)/a^2/d/tan(d*x+c)^(1/2)-2/3*(a+b*t
an(d*x+c))^(1/2)/a/d/tan(d*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.26, antiderivative size = 180, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3650, 3730, 12, 3656, 926, 95, 211, 214} \begin {gather*} \frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}-\frac {\text {ArcTan}\left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {\tanh ^{-1}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Tan[c + d*x]^(5/2)*Sqrt[a + b*Tan[c + d*x]]),x]

[Out]

-(ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]/(Sqrt[I*a - b]*d)) - ArcTanh[(Sqrt[I*a +
 b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]/(Sqrt[I*a + b]*d) - (2*Sqrt[a + b*Tan[c + d*x]])/(3*a*d*Tan[
c + d*x]^(3/2)) + (4*b*Sqrt[a + b*Tan[c + d*x]])/(3*a^2*d*Sqrt[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 926

Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && NeQ[c*d^2 + a*e^2,
 0] &&  !IntegerQ[m] &&  !IntegerQ[n]

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3656

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x]
, x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rubi steps

\begin {align*} \int \frac {1}{\tan ^{\frac {5}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}-\frac {2 \int \frac {b+\frac {3}{2} a \tan (c+d x)+b \tan ^2(c+d x)}{\tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}} \, dx}{3 a}\\ &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}+\frac {4 \int -\frac {3 a^2}{4 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{3 a^2}\\ &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}-\int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx\\ &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}-\frac {\text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {a+b x} \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}-\frac {\text {Subst}\left (\int \left (\frac {i}{2 (i-x) \sqrt {x} \sqrt {a+b x}}+\frac {i}{2 \sqrt {x} (i+x) \sqrt {a+b x}}\right ) \, dx,x,\tan (c+d x)\right )}{d}\\ &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}-\frac {i \text {Subst}\left (\int \frac {1}{(i-x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}-\frac {i \text {Subst}\left (\int \frac {1}{\sqrt {x} (i+x) \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}-\frac {i \text {Subst}\left (\int \frac {1}{i-(-a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}-\frac {i \text {Subst}\left (\int \frac {1}{i-(a+i b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d}\\ &=-\frac {\tan ^{-1}\left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a-b} d}-\frac {\tanh ^{-1}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {i a+b} d}-\frac {2 \sqrt {a+b \tan (c+d x)}}{3 a d \tan ^{\frac {3}{2}}(c+d x)}+\frac {4 b \sqrt {a+b \tan (c+d x)}}{3 a^2 d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.62, size = 172, normalized size = 0.96 \begin {gather*} \frac {\frac {3 (-1)^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {3 (-1)^{3/4} \text {ArcTan}\left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}-\frac {2 (a-2 b \tan (c+d x)) \sqrt {a+b \tan (c+d x)}}{a^2 \tan ^{\frac {3}{2}}(c+d x)}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Tan[c + d*x]^(5/2)*Sqrt[a + b*Tan[c + d*x]]),x]

[Out]

((3*(-1)^(3/4)*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a + I*b]
 + (3*(-1)^(3/4)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I*b]
 - (2*(a - 2*b*Tan[c + d*x])*Sqrt[a + b*Tan[c + d*x]])/(a^2*Tan[c + d*x]^(3/2)))/(3*d)

________________________________________________________________________________________

Maple [B] result has leaf size over 500,000. Avoiding possible recursion issues.
time = 0.57, size = 945613, normalized size = 5253.41 \[\text {output too large to display}\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^(5/2)), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {a + b \tan {\left (c + d x \right )}} \tan ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)**(5/2)/(a+b*tan(d*x+c))**(1/2),x)

[Out]

Integral(1/(sqrt(a + b*tan(c + d*x))*tan(c + d*x)**(5/2)), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/tan(d*x+c)^(5/2)/(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\mathrm {tan}\left (c+d\,x\right )}^{5/2}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^(1/2)),x)

[Out]

int(1/(tan(c + d*x)^(5/2)*(a + b*tan(c + d*x))^(1/2)), x)

________________________________________________________________________________________